extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2xC42).S3 = C23.9S4 | φ: S3/C1 → S3 ⊆ Aut C2xC42 | 12 | 3 | (C2xC4^2).S3 | 192,182 |
(C2xC42).2S3 = (C2xC12):3C8 | φ: S3/C3 → C2 ⊆ Aut C2xC42 | 192 | | (C2xC4^2).2S3 | 192,83 |
(C2xC42).3S3 = C2xC42.S3 | φ: S3/C3 → C2 ⊆ Aut C2xC42 | 192 | | (C2xC4^2).3S3 | 192,480 |
(C2xC42).4S3 = C4xDic3:C4 | φ: S3/C3 → C2 ⊆ Aut C2xC42 | 192 | | (C2xC4^2).4S3 | 192,490 |
(C2xC42).5S3 = C42:6Dic3 | φ: S3/C3 → C2 ⊆ Aut C2xC42 | 192 | | (C2xC4^2).5S3 | 192,491 |
(C2xC42).6S3 = (C2xC42).6S3 | φ: S3/C3 → C2 ⊆ Aut C2xC42 | 192 | | (C2xC4^2).6S3 | 192,492 |
(C2xC42).7S3 = C42:7Dic3 | φ: S3/C3 → C2 ⊆ Aut C2xC42 | 192 | | (C2xC4^2).7S3 | 192,496 |
(C2xC42).8S3 = C12.8C42 | φ: S3/C3 → C2 ⊆ Aut C2xC42 | 48 | | (C2xC4^2).8S3 | 192,82 |
(C2xC42).9S3 = C4xC4.Dic3 | φ: S3/C3 → C2 ⊆ Aut C2xC42 | 96 | | (C2xC4^2).9S3 | 192,481 |
(C2xC42).10S3 = C2xC12:C8 | φ: S3/C3 → C2 ⊆ Aut C2xC42 | 192 | | (C2xC4^2).10S3 | 192,482 |
(C2xC42).11S3 = C12:7M4(2) | φ: S3/C3 → C2 ⊆ Aut C2xC42 | 96 | | (C2xC4^2).11S3 | 192,483 |
(C2xC42).12S3 = C42.285D6 | φ: S3/C3 → C2 ⊆ Aut C2xC42 | 96 | | (C2xC4^2).12S3 | 192,484 |
(C2xC42).13S3 = C42.270D6 | φ: S3/C3 → C2 ⊆ Aut C2xC42 | 96 | | (C2xC4^2).13S3 | 192,485 |
(C2xC42).14S3 = C12:4(C4:C4) | φ: S3/C3 → C2 ⊆ Aut C2xC42 | 192 | | (C2xC4^2).14S3 | 192,487 |
(C2xC42).15S3 = (C2xDic6):7C4 | φ: S3/C3 → C2 ⊆ Aut C2xC42 | 192 | | (C2xC4^2).15S3 | 192,488 |
(C2xC42).16S3 = C4xC4:Dic3 | φ: S3/C3 → C2 ⊆ Aut C2xC42 | 192 | | (C2xC4^2).16S3 | 192,493 |
(C2xC42).17S3 = C42:10Dic3 | φ: S3/C3 → C2 ⊆ Aut C2xC42 | 192 | | (C2xC4^2).17S3 | 192,494 |
(C2xC42).18S3 = C42:11Dic3 | φ: S3/C3 → C2 ⊆ Aut C2xC42 | 192 | | (C2xC4^2).18S3 | 192,495 |
(C2xC42).19S3 = C2xC4xDic6 | φ: S3/C3 → C2 ⊆ Aut C2xC42 | 192 | | (C2xC4^2).19S3 | 192,1026 |
(C2xC42).20S3 = C2xC12:2Q8 | φ: S3/C3 → C2 ⊆ Aut C2xC42 | 192 | | (C2xC4^2).20S3 | 192,1027 |
(C2xC42).21S3 = C2xC12.6Q8 | φ: S3/C3 → C2 ⊆ Aut C2xC42 | 192 | | (C2xC4^2).21S3 | 192,1028 |
(C2xC42).22S3 = C42.274D6 | φ: S3/C3 → C2 ⊆ Aut C2xC42 | 96 | | (C2xC4^2).22S3 | 192,1029 |
(C2xC42).23S3 = C2xC4xC3:C8 | central extension (φ=1) | 192 | | (C2xC4^2).23S3 | 192,479 |
(C2xC42).24S3 = Dic3xC42 | central extension (φ=1) | 192 | | (C2xC4^2).24S3 | 192,489 |