Extensions 1→N→G→Q→1 with N=C2xC42 and Q=S3

Direct product G=NxQ with N=C2xC42 and Q=S3
dρLabelID
S3xC2xC4296S3xC2xC4^2192,1030

Semidirect products G=N:Q with N=C2xC42 and Q=S3
extensionφ:Q→Aut NdρLabelID
(C2xC42):S3 = C2xC42:S3φ: S3/C1S3 ⊆ Aut C2xC42123(C2xC4^2):S3192,944
(C2xC42):2S3 = C4xD6:C4φ: S3/C3C2 ⊆ Aut C2xC4296(C2xC4^2):2S3192,497
(C2xC42):3S3 = (C2xC42):3S3φ: S3/C3C2 ⊆ Aut C2xC4296(C2xC4^2):3S3192,499
(C2xC42):4S3 = C2xC42:2S3φ: S3/C3C2 ⊆ Aut C2xC4296(C2xC4^2):4S3192,1031
(C2xC42):5S3 = C2xC42:3S3φ: S3/C3C2 ⊆ Aut C2xC4296(C2xC4^2):5S3192,1037
(C2xC42):6S3 = C2xC42:4S3φ: S3/C3C2 ⊆ Aut C2xC4248(C2xC4^2):6S3192,486
(C2xC42):7S3 = (C2xC4):6D12φ: S3/C3C2 ⊆ Aut C2xC4296(C2xC4^2):7S3192,498
(C2xC42):8S3 = C2xC4xD12φ: S3/C3C2 ⊆ Aut C2xC4296(C2xC4^2):8S3192,1032
(C2xC42):9S3 = C4xC4oD12φ: S3/C3C2 ⊆ Aut C2xC4296(C2xC4^2):9S3192,1033
(C2xC42):10S3 = C2xC4:D12φ: S3/C3C2 ⊆ Aut C2xC4296(C2xC4^2):10S3192,1034
(C2xC42):11S3 = C2xC42:7S3φ: S3/C3C2 ⊆ Aut C2xC4296(C2xC4^2):11S3192,1035
(C2xC42):12S3 = C42.276D6φ: S3/C3C2 ⊆ Aut C2xC4296(C2xC4^2):12S3192,1036
(C2xC42):13S3 = C42.277D6φ: S3/C3C2 ⊆ Aut C2xC4296(C2xC4^2):13S3192,1038

Non-split extensions G=N.Q with N=C2xC42 and Q=S3
extensionφ:Q→Aut NdρLabelID
(C2xC42).S3 = C23.9S4φ: S3/C1S3 ⊆ Aut C2xC42123(C2xC4^2).S3192,182
(C2xC42).2S3 = (C2xC12):3C8φ: S3/C3C2 ⊆ Aut C2xC42192(C2xC4^2).2S3192,83
(C2xC42).3S3 = C2xC42.S3φ: S3/C3C2 ⊆ Aut C2xC42192(C2xC4^2).3S3192,480
(C2xC42).4S3 = C4xDic3:C4φ: S3/C3C2 ⊆ Aut C2xC42192(C2xC4^2).4S3192,490
(C2xC42).5S3 = C42:6Dic3φ: S3/C3C2 ⊆ Aut C2xC42192(C2xC4^2).5S3192,491
(C2xC42).6S3 = (C2xC42).6S3φ: S3/C3C2 ⊆ Aut C2xC42192(C2xC4^2).6S3192,492
(C2xC42).7S3 = C42:7Dic3φ: S3/C3C2 ⊆ Aut C2xC42192(C2xC4^2).7S3192,496
(C2xC42).8S3 = C12.8C42φ: S3/C3C2 ⊆ Aut C2xC4248(C2xC4^2).8S3192,82
(C2xC42).9S3 = C4xC4.Dic3φ: S3/C3C2 ⊆ Aut C2xC4296(C2xC4^2).9S3192,481
(C2xC42).10S3 = C2xC12:C8φ: S3/C3C2 ⊆ Aut C2xC42192(C2xC4^2).10S3192,482
(C2xC42).11S3 = C12:7M4(2)φ: S3/C3C2 ⊆ Aut C2xC4296(C2xC4^2).11S3192,483
(C2xC42).12S3 = C42.285D6φ: S3/C3C2 ⊆ Aut C2xC4296(C2xC4^2).12S3192,484
(C2xC42).13S3 = C42.270D6φ: S3/C3C2 ⊆ Aut C2xC4296(C2xC4^2).13S3192,485
(C2xC42).14S3 = C12:4(C4:C4)φ: S3/C3C2 ⊆ Aut C2xC42192(C2xC4^2).14S3192,487
(C2xC42).15S3 = (C2xDic6):7C4φ: S3/C3C2 ⊆ Aut C2xC42192(C2xC4^2).15S3192,488
(C2xC42).16S3 = C4xC4:Dic3φ: S3/C3C2 ⊆ Aut C2xC42192(C2xC4^2).16S3192,493
(C2xC42).17S3 = C42:10Dic3φ: S3/C3C2 ⊆ Aut C2xC42192(C2xC4^2).17S3192,494
(C2xC42).18S3 = C42:11Dic3φ: S3/C3C2 ⊆ Aut C2xC42192(C2xC4^2).18S3192,495
(C2xC42).19S3 = C2xC4xDic6φ: S3/C3C2 ⊆ Aut C2xC42192(C2xC4^2).19S3192,1026
(C2xC42).20S3 = C2xC12:2Q8φ: S3/C3C2 ⊆ Aut C2xC42192(C2xC4^2).20S3192,1027
(C2xC42).21S3 = C2xC12.6Q8φ: S3/C3C2 ⊆ Aut C2xC42192(C2xC4^2).21S3192,1028
(C2xC42).22S3 = C42.274D6φ: S3/C3C2 ⊆ Aut C2xC4296(C2xC4^2).22S3192,1029
(C2xC42).23S3 = C2xC4xC3:C8central extension (φ=1)192(C2xC4^2).23S3192,479
(C2xC42).24S3 = Dic3xC42central extension (φ=1)192(C2xC4^2).24S3192,489

׿
x
:
Z
F
o
wr
Q
<